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Objective

Explore new numerical and 
computer science approaches to 
efficiently use EOSPAC within the 
context of FleCSALE and reduce 
the cost of equation of state (EOS) 
table queries



Motivation
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• Tabular equation of state (EOS) data are constantly queried by 
physics codes

• Queries can occur several times per time-step at each 
computational cell for each material that exists at a query 
location

• Queries regularly involve expensive interpolations of 
thermodynamic quantities

• Thermodynamic quantities are necessary for computation of 
additional physical quantities for the simulations

• Reducing the cost of tabular EOS queries provides an overall 
reduction in the solution time for many complex physics 
problems



FleCSALE, FleCSI, + EOSPAC
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• FleCSALE
– Continuum dynamics code, supports multi-phase fluids and tabular equation of 

state (EOS)
– 2D/3D cell-centered Eulerian and Lagrangian solver
– 3D FEM Lagrangian solver

• FleCSI
– Compile-time configurable framework designed to support multi-physics 

application development
– Supports an MPI and Legion backend
– Primary structure is hierarchical, exposing low-level, mid-level, and high-level 

interfaces that are appropriate for different sets of users
• EOSPAC

– Collection of interface routines
– Used to access the SESAME data library
– Can perform various data adjustments and interpolations on the SESAME data
– Inherently serial execution



Triple Point Problem 
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• Fluids simulation involving three 
different materials 
– All materials are ideal gases

• Problem decomposed into four regions
– Left-most and bottom regions: two different 

materials at the same density
– Top region: third material at low density
– Middle region: mixed composition & density

• All materials can use tabular EOS data 
for the simulations. 

Initial Conditions



Bottlenecks and Strategies
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• Initial Bottlenecks:
– Ghost Data Creation
– Material Grouping
– MPI Communication
– Interpolation

• Explored Strategies:
– Software Engineering
– MPI Communication Optimization --- sparse data
– Hybrid Programming --- OpenMP
– GPU Porting with different memory schemes
– Machine Learning



Software Engineering 
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FleCSALE/EOSPAC Linking
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• Linking Optimizations:
– Enabled the inversion/storing of modified Sesame tables at the initialization of FleCSALE

– Reformatted FleCSALE to send common material cells to EOSPAC as groups



Sorting in EOSPAC’s Search Algorithm
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• Before interpolations, EOSPAC places a stencil on the material table à eos_srchdf()

• Approach uses an input to eos_srchdf() which gives the first point for the table sweep

• The indexes of the array of points to be interpolated are sorted before sweeping

• Two versions:

– Embedded in EOSPAC

– Inside of FleCSALE



Problem-Dependent Performance 
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• There is potential for enhanced performance from the index sorting 
which is problem dependent

• Example: CDSS Scaling Problem (Triple Point)
– Simulation density range = 0 to 3.5 
– Sesame table range = 0 to ~61,000 
– We only use roughly 20% of the table for this problem

• Problems with larger property variations are more likely to obtain better 
performance with the sorting approach



Sparse Data Optimization

7/27/18 |   12Los Alamos National Laboratory



Motivation
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Sparse Data Optimization
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• Weak scaling graph shows huge 
communication latency

• MPI backend in FleCSI uses One 
Sided Communication

• Tracing the application showed 
~74% of the code was MPI 
communication calls

• MPI_Win_create calls was the 
most expensive with ~28% of the 
execution time

58.6 sec (28.1 %)

32.4 sec (15.5 %)

21.2 sec (10.2 %)

19.4 sec (9.31 %)

7.08 sec (3.39 %)

MPI_Win_create

MPI_Win_complete

MPI_Get

MPI_Win_free

MPI_Isend



Sparse Data Optimization –Copy removal
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• Unnecessary copies of data were
eliminated

• Shared window creation was done 
only once with reduction of 
MPI_Win_create calls

• MPI Communications takes about 
~57%

• Performance Improvement
• Single node ~20%
• Multi node ~40%

41.6 sec (39.4 %)

11.7 sec(11.1 %)

3.89 sec(3.68 %)

1.09 sec (1.04 %)

0.598 sec (0.566 %)

MPI_Win_complete

MPI_Get

MPI_Win_wait

MPI_Win_post

MPI_Win_create



Sparse Data Optimization- MPI_Datatype
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• MPI_Datatype is used for shared 
ghost cells to treat as a single 
message

• MPI_Get and MPI_Win_complete
calls reduced

• MPI Communication takes about 
43%

• Performance Improvement
• Single node ~25%
• Multi node ~60%

Shared ghost cells

MPI_Get

MPI_Win_post

MPI_Win_create

MPI_Win_wait

MPI_Win_complete 25.2 sec(31.6 %)

3.64 sec (4.57 %)

2.27 sec (2.85 %)

1.11 sec (1.39 %)

0.46 sec (0.577%)



Performance Analysis
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• Overall performance improvement ~80%
• Speedup of ~5x 
• MPI_Win_complete is still expensive



Hybrid programming with OpenMP
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Adding OpenMP in FleCSALE
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• Fork/join model:

• Two OpenMP approaches were investigated:
– tasking;
– for-loop work-sharing.



Adding OpenMP in Flecsale
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• Changes done in: maire_hydro/tasks.h
• Mesh: triple_200x81.g
• Flags: -g -O3 -fopenmp
• Compilers: gcc/7.3.0 and intel/18.0.2
• MPI implementation: mpich/3.2.1-intel_18.0.2
• Platform: Intel Haswell --- E5-2698 v3

– Sockets --- 2
– Cores per Socket --- 16
– NUMA Domains --- 2



Performance results
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GPU Porting for EOSPAC
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Motivation
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• FleCSALE queries EOSPAC for 
interpolated EOS values.

• Profiling revealed Interpolation 
was costliest part of FleCSALE, 
~15% of simulation.

• Can be parallelized easily.
• GPUs are next generation 

hardware for intensive 
computations.

• Interpolation is not memory 
intensive.

Device code
Interpolation schemes 

(Birational, Bilinear etc.)

Host code 

Loading EOS 
data

M
em

cpy
M

em
cpy

Host code 

Interpolated 
EOS values



Methodology
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• Wrapper around Birational 
Interpolation kernel and Bilinear 
Interpolation kernel that can be 
called inside EOSPAC.

• No changes to the public 
interfaces. Only need a separate 
library compilation.

• Interpolation algorithms are 
called multiple times within a 
single FleCSALE time-step.

• No Memcpy is necessary for the 
interpolated values. 

Host memory
Mapped, pinnedUnpinned

EOS Tables Values to 
interpolate

Device memory
Global Memory

Ghost Data



Bilinear Interpolation
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• Can be executed by the 
hardware using texture 
memory.

• Requires the use of 32 bit, 
single precision data types 

• Use of single precision types 
provides an improved 
processing throughput of at 
least 2x, depending on 
architecture

• Texture memory allows us to 
store tables in the unified L1 
cache/texture cache

Device Memory

Host Memory

Texture Memory

Ghost Data

Global Memory

Results

Unpinned Mapped, pinned
Values to

Interpolate ResultsGhost Data



Speed-up from CUDA
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Speed-up from CUDA
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Speed-up from CUDA
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Speed-up from CUDA
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Accuracy for Sesame 3720
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Accuracy for Sesame 3720
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Accuracy for Sesame 3720
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Machine Learning for EOS Interpolation 
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Machine Learning for EOS Interpolation
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Goal: Replace calls to EOSPAC with ML regression.

Process:
1. Generate a training dataset using EOSPAC

2. Train the model

3. Characterize the error (compared to EOSPAC)

4. Integrate with FleCSALE

ML Models:
• Kernel Ridge Regression (KRR)

• Random Forest (RF)



Model Framework

7/27/18 |   39Los Alamos National Laboratory

Nomenclature: density (d), internal energy (ie), pressure (p), temperature (T), 
soundspeed (ss)

Pressure model
• F(d,ie) = p

Temperature model
• F(d,ie,p)=T

Soundspeed model
• F(d,ie,p,T) = ss

F("⃗) =#⃗

features

labels



Random forest vs. Kernel Ridge Regression
• RF is more accurate but much slower
• RF takes ~3GB
• KRR takes ~1.5KB

Machine Learning Error Analysis
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On-node Performance Comparison
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Machine Learning Take-aways
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• Accuracy and speed tradeoff

• Even with low accuracy, performance is questionable (in this case)

• Other ML models and C++ libraries exist



Final Results
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Results
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• Proper selection of integration options and algorithms within EOSPAC 
provide a noticeable speed-up in FleCSALE

• Sparse data optimization with MPI backend shows a significant 
improvement about ~5x speed-up

• Initial CUDA results are promising and show a considerable speedup. 
However, integration with FleCSALE and host code optimizations are 
still required  

• Initial machine learning integration did not increase performance, but 
other models and libraries could offer improvements 



Future Pursuits
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• Add additional host code optimizations that allow for additional GPU 
performance improvements

• Take advantage of additional memory management schemes to further 
reduce the memory latency involved with GPU usage

• Study the performance of MPI and Legion backends, with and without 
the additional optimizations

• Utilize different parallel programming models within FleCSALE, (e.g., 
MPI + CUDA)

• Explore other types of Target Synchronization techniques for MPI 
communication like MPI_Lock, MPI_Unlock.

• Investigate other machine learning libraries (e.g., TensorFlow, MLPACK)



Acknowledgements

7/27/18 |   49Los Alamos National Laboratory

Thank you to the Co-Design Mentors, 
FleCSI Development Team, CCS-7, ISTI, 
ASC, & LANL 


